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1 Introduction

The near horizon limit of the membrane solution in 11-D supergravity gives rise to a back-

ground which is asymptotically AdS4 × S7 (see e.g., [1] for the solitonic p-brane solutions

in various supergravity theories). By gauge-gravity duality, we expect that this gravita-

tional background also has a dual description in terms of the worldvolume gauge theory on

M2-branes. One of the interesting developments in the past year has been the explicit con-

struction of these gauge theories. Generalizing the pioneering work of Bagger, Lambert [2]

and Gustavsson [3], superconformal gauge theories living on N membranes probing the

C
4/Zk orbifold singularity have been identified (“ABJM theory”) [4].1 This construction

1The flat space limit corresponds to the special case k = 1.

– 1 –



J
H
E
P
0
5
(
2
0
0
9
)
1
1
4

has also been further generalized to include some other classes of toric singularities in,

e.g., [5].

One interesting feature of ABJM theory is that they are Chern-Simons gauge theories

coupled to matter, and they are characterized by the level k which defines the orbifold on

the gravity side. The Chern-Simons level is effectively the coupling of the theory, implying

that the flat space limit corresponds to a strongly coupled gauge theory. This is unlike the

familiar case of AdS5/CFT4, where the gauge-coupling is a free parameter in flat space.

If we move the branes away from the orbifold, the membranes are locally in flat space.

In the near horizon limit, this will translate to the emergence of an AdS4 ×S7 throat. The

gauge theory on the worldvolume of membranes in flat space is ABJM at level k = 1. The

interpolation on the gravity side (Note that the solution is still singular in this case because

the geometry is singular.) between AdS4 × S7/Zk and AdS4 × S7 should correspond to

giving an appropriate vev that triggers an RG flow in the gauge theory picture. This RG

flow should lead us from generic k to k = 1 ABJM. In practice, giving a VEV changes

ABJM theory to N = 8 SYM theory which is not conformal, but the expectation is that it

runs in the IR to the correct ABJM theory. We present some insights into how this happens.

In particular, we construct the explicit supergravity solution that exhibits this shift.

Another related problem we consider is the resolution of the orbifold. We can construct

explicit metrics on the resolution when k = 4. In this case, the resolution is a six-cycle.

We consider stacks of branes on the resolution, which looks far away in the UV like AdS4×
S7/Z4 and construct a smooth interpolation between that and the usual AdS4 × S7. The

solution is fully non-singular. It is expressed in terms of angular harmonics on CP
3, and

the sum over the angular harmonics reproduces the AdS throat close to the stack. The

basic message of the paper is that there exist quantum field theories that flow from a UV

fixed point which is a Chern-Simons-matter theory at level k to an IR fixed point which

is a Chern-Simons-matter theory at level k = 1. This is a general consequence of the

ABJM construction. Our supergravity solutions, as well as the Abelian RG flow and the

moduli space arguments on the gauge theory side, are presented as evidence for this. It

should be emphasized that the level shift that we consider is very different from the familiar

perturbative one-loop shift in the level that arises in Chern-Simons theories. Our level shift

arises at the end of an RG flow in the IR and is not visible by doing perturbation theory

around the UV fixed point. We present a schematic diagram of the “holographic” version

of the RG flow in figure 1. We show only the unresolved case, the “tip” will of course be

smooth for the resolution.

In the next section, after reviewing ABJM theory, we consider supergravity solutions

with brane sources on the orbifold and their holographic RG flows. In section 3, we discuss

the resolution of the orbifold and branes on them, including the emergence of the AdS

throat near the stack. Section 4 considers the gauge theory aspects. Finally we conclude

with some comments.

Interpretational aspects of Bagger-Lambert theory were clarified in [18, 19], the 3-

algebra structures underlying BLG and ABJM were discussed in [20], various formulations

of membrane theories was considered in [21], integrability in AdS4/CFT3 were discussed

– 2 –
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Orbifold
Cone

Membrane stack

IR of field theory, branes at a smooth point,
AdS4 × S7 throat

UV of field theory, branes effectively at the tip,

throat looks like AdS4 × S7/Zk

Figure 1. Schematic holographic picture of the RG Flow between two ABJM theories with generic

k (UV), and k = 1 (IR). This is the unbackreacted geometry, even though we have indicated the

location of the emergent AdS throat.

in [22],2 [24] and general classes of three-dimensional CFTs and their gravitational duals

were constructed in [25, 26]. An approach to membranes using rank two tensor fields

(without 3-algebras) was proposed in [27]. While this work was being completed, [28]

appeared, which also considers M2-brane flows, but in a different context. Chern-Simons

level shifts in the context of holographic condensed matter systems have been investigated

in [47].

2 The orbifold

In this section we present some of the relevant details of gauge-gravity duality on R
2,1 ×

C
4/Zk. We start by reviewing some relevant aspects of ABJM gauge theory.

2.1 ABJM gauge theory

ABJM theory is a 2 + 1 dimensional N = 6 superconformal model with U(N) × U(N)

gauge-fields (A, Â), whose action takes the form of a (k,−k)-level Chern-Simons theory.

The gauge-fields are coupled to two sets of two bifundamental scalars (ZA,WA), A = 1, 2.

Here ZA transform in the (N, N̄) and WA in the (N̄,N) representation.3 The theory

also contains superpartners of these fields, some of which are auxiliary fields that can be

integrated out. The final form of the action in component fields is presented in [11], we

2It has been argued in [23] that the the supersymmetric sigma model for the string in AdS4 × CP
3 is

most appropriately thought of as arising from dimensional reduction. In this framework, the theory that

results is a “twisted” supercoset, and the classical integrability is not clear.
3Note that the indices on the fields are placed so that the complex conjugate of W transforms like Z.

– 3 –
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will just right down the kinetic terms for the bosons here:

S =

∫

d3x

[

k

4π
ǫµνλ

(

Tr

(

Aµ∂νAλ +
2i

3
AµAνAλ

)

− Tr

(

Âµ∂νÂλ +
2i

3
ÂµÂνÂλ

))

−Tr(DµZ)†DµZ − Tr(DµW )†DµW + fermionic and potential terms

]

. (2.1)

The traces are in the appropriate representations of the relevant groups and the covariant

derivatives are defined by

DµZ = ∂µZ − iZÂµ + iAµZ, (2.2)

DµW = ∂µW + iÂµW − iWAµ. (2.3)

On general grounds [12], one expects that the Chern-Simons level is quantized to be integer

valued when the gauge group rank is ≥ 2. The theory is weakly coupled when k is large,

and the ’t Hooft coupling takes the form N/k.

One of the general expectations of the gauge-string correspondence is that the moduli-

space of vacua of the gauge theory is dual to the geometry on which the branes move.

Indeed, one piece of evidence that ABJM theory is indeed the correct theory for N M2-

branes probing a C
4/Zk singularity, is that the moduli space is precisely (C4/Zk)

N/SN .

We will use this fact when we discuss RG flows in section 4, for the moment, we merely

mention that this connection is made through the identification CI = {ZA,WB†}, see

footnote 3. With I running from 1 through 4, it can be shown that CI correspond to the

complex coordinates C
4, up to a discrete Zk identification. This notation manifests the

SU(4)R invariance of the theory.

2.2 Membrane supergravity

The space C
4/Zk is defined as the four-dimensional complex space C

4 after the identification

(w1, w2, w3, w4) ∼
(

e2πi/kw1, e
2πi/kw2, e

2πi/kw3, e
2πi/kw4

)

. (2.4)

The flat metric on C
4 descends to the cone metric on the orbifolded space, with the origin

as the orbifold singularity:

ds28 = dr2 + r2dΩ2
S7/Zk

(2.5)

We are interested in M2-branes in the background R
2,1×C

4/Zk. A stack of M2-branes

in a background acts as a source for the 11 dimensional supergravity equations of motion.

A standard ansatz for solving these equations of motion can be found for example, in [1].

The non-vanishing fields take the form:

ds2 = H−2/3(y)ηµνdx
µdxν +H1/3(y)ds28, (2.6)

F4 = dH−1 ∧ dx0 ∧ dx1 ∧ dx2, (2.7)

The ds28 piece in the metric denotes the dimensions transverse to the M2-branes, and is

given in our case by (2.5). The worldvolume Minkowskian metric of the M2-branes is

– 4 –
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(2+1)-dimensional, and the entire solution is captured by a single function, H(y), where

y denotes the coordinates on the transverse space. This function is called the warp factor

and it fully describes the solution. With this ansätz, the supergravity EOMs (with source

terms for the branes) reduce to just one equation, the Green’s equation on the transverse

space (y0 denotes the location of the stack):

�yH(y, y0) = − C√
g8
δ8(y − y0), with C = 2κ2

11T2N. (2.8)

where we denote the determinant of the 8-metric by g8. The strength of the source is cap-

tured by C = 2κ2
11T2N where T2 is the brane tension and κ11 is the 11-D Newton’s constant.

For the case of the unresolved C
4/Zk, when we place the stack at the orbifold singularity

at the apex of the cone, this equation can be immediately solved because the warp factor

depends only on the radial coordinate. Green’s equation takes the form

1

r7
∂

∂r

(

r7
∂

∂r
H

)

= − 3kC

π4r7
δ(r). (2.9)

The normalization of the delta function accounts for the fact that we are ignoring the

angular dependence. It arises from an integral over the angles. This is analogous to the

fact that in 3-dimensions, if we are looking at sources at the origin (r0 = 0), then we can

replace 1
r2 sin θ

δ(r− r0)δ(θ− θ0)δ(φ− φ0) → 1
4πr2 δ(r) when dealing with test-functions that

are sufficiently well-behaved at the origin. The 4π here arises through an angle integral as

well:
∫ π
0 sin θdθ

∫ 2π
0 dφ = 4π.

Away from the origin the equation is easily integrated, and integrating over the delta

function fixes the constant of integration:

H(r) =
L6

r6
where L6 =

kC

2π4
. (2.10)

Notice that in integrating the Poisson equation, we assume that the Green’s function falls

off to zero at infinity. This is tantamount to assuming that we are in the near horizon

region. If we allow a non-zero constant at infinity in H(r), we will have membranes in

an asymptotically flat space. With the H(r) obtained above, if we do the substitution

z = L3/2r2, we end up with

ds2 =
L2

4z2

(

dz2 + ηµνdx
µdxν

)

+ L2dΩS7/Zk
=
L2

4
ds2AdS4

+ L2dΩS7/Zk
(2.11)

which is nothing but AdS4 × S7/Zk with appropriate radii.

Another thing that we could do is to put the stack away from the tip, in which case

we expect that far away, the solution should still look like the one we found above. But

close to the stack, now we should see the emergence of the AdS throat because the stack is

now at a smooth point. The full solution will have a singularity at r = 0. We check these

expectations in the next subsection. Moving the stack away from the origin is equivalent

to turning on a VEV in the gauge theory. This triggers an RG flow and the near-horizon

limit will correspond to the IR fixed point of this flow. Aspects of the gauge theory side

will be discussed in section 4.

– 5 –
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2.3 Membranes away from the orbifold

Here we compute the Green’s function for a D-brane stack on the unresolved orbifold, but

away from the tip. We will call the radial coordinate ρ instead of r. This is for ease of

comparison with the resolved case we will consider later on. The resolution parameter

a = 0 in the present case. The stack of branes will be placed at ρ0 6= 0, away from the tip.

Far away from the stack, we expect to reproduce the behavior we calculated in section 2.2,

but we also expect to see the AdS throat in the near-horizon region because the stack is

no longer at a singular point. The fact that the space is unresolved will be reflected in the

fact that the solution is still singular.

To simplify the computations, without loss of generality we will look at the case where

the stack is at the point ρ = ρ0, ξ = 0, β = 0. The location ξ = 0 kills the dependence of

the Green function on the other angles of the CP
3.4 We want to retain the dependence on

β because otherwise our solution will correspond to branes smeared over the fibered circle.

So we will look for solutions of the form H(ρ, ξ, β). The form of the Laplacian permits

such a choice. The equation to be solved takes the form

�ρH +
1

ρ2

(

�ξH +
16

cos2 ξ
∂2

βH
)

= − C

π3ρ7 sin5 ξ cos ξ
δ(ρ− ρ0)δ(ξ)δ(β), (2.12)

where �ρ =
1

ρ7

∂

∂ρ

(

ρ7 ∂

∂ρ

)

,

with �ξ as defined by (3.16). We first solve the azimuthal (fiber) part

∂2
βχm(β) = −m2χm(β) to find χm(β) =

√

k

2π
eimβ . (2.13)

Note that m runs over multiples of k so that the function is periodic. The normalization

is also affected by the quotienting of the fiber. Plugging this into the rest of the angular

part, we find

(

�ξ + 2l(2l + 6) − 16m2

cos2 ξ

)

Σl(ξ) = 0, (2.14)

The eigenvalue l has been defined for future convenience (the solution is regular everywhere

in its range only if l is integral). The solutions of the above equations are in terms of Jacobi

polynomials, see appendix. The full normalized angular solutions Yl,m ≡ Σl(ξ)×χm(β) are

Yl,m(ξ, β) =

√

2(2l + 3)(l + 2m+ 2)(l + 2m+ 1)

(l − 2m+ 2)(l − 2m+ 1)
cos4m ξ P

(4m,2)
l−2m (− cos 2ξ)

√

k

2π
eimβ .

(2.15)

The fact that l is integral, l ≥ 0, and that m is integral with |2m| ≤ l can be obtained from

the appropriate periodicity in β and the regularity of the harmonic functions at the poles.

This is exactly analogous to the familiar case of harmonics on a 2-sphere.

4See section 3.2 for a more complete discussion. We are using S7 as a circle fibration over CP
3. The

CP
3 metric is presented in an appendix.

– 6 –
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Now we turn to the radial part of the equation. It looks like

∂2Hl

∂ρ2
+

7

ρ

∂Hl

∂ρ
− 2l(2l + 6)

ρ2
Hl = − C

π3ρ7
δ(ρ − ρ0), (2.16)

whose solution, after matching the function and its derivative through the delta function is

Hl(ρ, ρ0) =























C

2π3(2l + 3)
ρ
−(2l+6)
0 ρ2l ρ ≤ ρ0,

C

2π3(2l + 3)
ρ−(2l+6)ρ2l

0 ρ ≥ ρ0.

(2.17)

The full solution looks like

H(ρ, ρ0; ξ, 0;β, 0) =
∑

l,m

Hl(ρ, ρ0)Y
∗
l,m(0, 0)Yl,m(ξ, β). (2.18)

Restricting to l = 0 (which forces m = 0) and using properties of Jacobi polynomials gives

the dependence far away from the source

H(ρ) → C

6π3ρ6
× 6 × k

2π
=

kC

2π4ρ6
. (2.19)

This reproduces the result obtained in eq. (2.10), where the stack was assumed to be at

the tip.

2.4 Emergence of the AdS throat

We will be rather quick in this subsection because essentially the same ideas, in a somewhat

more complicated form, will re-appear in the resolved case: we present more detail there.

The reader might wish to come back to this section after reading section 3.3.

To see the emergence of the AdS throat near the stack, we first expand the radial

equation of motion (2.16) near the source: ρ = ρ0 + ρ̃, and retain only first order pieces.

The homogeneous part is

∂2Hl

∂ρ̃2
+

7

ρ0

∂Hl

∂ρ̃
− 2l(2l + 6)

ρ2
0

Hl = 0. (2.20)

This is easily solved, and the solution that falls off far away is

Hl = Al exp







−

(

7 +
√

49 + 16l(l + 3)
)

ρ̃

2ρ0







(2.21)

The normalization Al must be fixed by integrating across the source according to

− C

π3
=

(

ρ7 dHl

dρ

)

∣

∣

∣

∣

∣

ρ̃=0

. (2.22)

– 7 –
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We will only need the dependence on l (for large l) and ρ̃, so we will write the final

result as

Hl ∼
exp(−αlρ̃)

l
(2.23)

for some positive α that does not contain l or ρ̃.

Our aim is to show that the warp factor reduces to the hexic AdS form close to the

stack. To demonstrate this, it is easiest to approach the stack along β = 0, ξ = 0, in which

case (2.18) reduces to

H ∼
∑

l,m

(2l + 3)(l + 2m+ 2)(l + 2m+ 1)(l − 2m+ 2)(l − 2m+ 1)Hl

∼
∑

l

l6Hl ∼
∑

l

l5 exp(−αlρ̃), (2.24)

where we have used the Jacobi polynomial identity P
(4m,2)
l−2m (−1) = (−1)l(l − 2m + 2)(l −

2m + 1)/2 and also the fact that |2m| ≤ l. The final expression can be thought of as a

regulated sum and we can write it as an integral (see the discussion around (3.34) for an

explanation):

H ∼
∫ 1/ρ̃

0
l5 exp(−αlρ̃)dl ∼ 1

ρ̃6

∫ 1

0
x5 exp(−αx)dx ∼ const.

ρ̃6
, (2.25)

which is the hexic fall-off necessary for the emergence of the AdS4 × S7 throat

(cf. 2.10), (2.11). It is necessary to note here also that around the smooth point ρ0,

along the line of approach to the stack that we are considering, the metric (2.5) can be

written in flat form with a radial coordinate ρ̃. The easiest way to notice this is to note

that away from the orbifold singularity, the metric is flat to begin with.

3 M2-branes on the resolution

The supergravity solution that we constructed in the previous section is singular, even

when the stack is moved away from the orbifold, because the space-time is not smooth. It

would be interesting to construct a solution on a fully smooth geometry and that is what

we set out to do in this section. Later, we also make some comments about the dual gauge

theory interpretation of this resolution, and the RG flows on them.

3.1 The resolved geometry

We start with some general comments about C
n/Zn orbifolds and their resolutions. The

symmetries of the C
n/Zn orbifold are sufficiently restrictive that demanding that the re-

solved metric respect these symmetries (along with the fact that it is Ricci flat and Kähler),

completely fixes it. When n = 2, this gives rise to the familiar Eguchi-Hanson ALE

space, and when n > 2 this gives us a simple way to construct gravitational instantons in

higher dimensions.

– 8 –
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The Zn orbifold action is a discrete subgroup of the SU(n) isometry which rotates the

various w’s (see (2.4) for the n = 4 case). We can take the Kähler form K(r) on this space

to depend only on r2 =
∑n

i |wi|2. Since the space is Calabi-Yau, among other things, it

is both Ricci-flat and Kähler. So the metric can be written as gij̄ = ∂i∂j̄K, and then the

Ricci-flatness condition turns out to be a differential equation for K(r):

det
(

∂i∂j̄K
)

= const. (3.1)

From the explicit form of the matrix, it can be seen that this reduces (after absorbing the

irrelevant constant by re-scaling K(r)) to

(K ′)(n−1)(r2K ′′ +K ′) = 1. (3.2)

The primes here are with respect to r2. It will prove convenient to introduce a new function

F defined by

F ≡ r2K ′, (3.3)

in terms of which the differential equation above has the simple solution

F = (r2n + a2n)1/n, (3.4)

with a2n an integration constant which reflects the resolution of the space. By tuning a

to zero, we can recover the unresolved space. It is possible to integrate F once again to

express K(r) in terms of hypergeometric functions. We present it here for completeness:

K(r) = r2 2F1

(

− 1

n
,− 1

n
; 1 − 1

n
;−a

2n

r2n

)

(3.5)

So far, everything we said is valid for any n. Our real interest is in the special case when

the transverse space is 8-dimensional and corresponds to membrane theories, so now we

specialize to the case of n = 4. This C
4/Z4 orbifold will be a central object in this section.

With the Kähler potential at hand, now we can define some convenient angular vari-

ables to write down an explicit form of the metric. We define eight real coordinates through5

w1 = r sin ξ sinα sin
θ

2
ei

(ψ−ϕ)
2 ei

β
4 ei

χ
2 (3.6)

w2 = r sin ξ sinα cos
θ

2
ei

(ψ+ϕ)
2 ei

β
4 ei

χ
2 (3.7)

w3 = r sin ξ cosα ei
β
4 ei

χ
2 (3.8)

w4 = r cos ξ ei
β
4 (3.9)

Using this definition of wi, we can calculate the metric on the resolution directly as ds2 =

gij̄dw
idw̄j̄ , with gij̄ = ∂i∂j̄K. The result, once the dust settles, is

ds2 = F ′dr2 +
F ′r2

16
(dβ −A)2 + F ds2

CP3 , (3.10)

5Some hints for the choice of this parametrization can be found from the Fubini-Study metric on CP
3.

See appendix A.

– 9 –
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where the CP
3 metric is as defined in the appendix, and A is as given by (A.10), with

k = 4. Now we can define a new radial coordinate through ρ2 ≡ F , and we reach the

simple and useful form:

ds2 =
dρ2

(

1 − a8

ρ8

) +
ρ2

16

(

1 − a8

ρ8

)

(dβ −A)2 + ρ2ds2
CP3. (3.11)

Notice that this structure is an immediate generalization of Eguchi-Hanson, thought of as

a resolution of C
2/Z2 with the singularity replaced by a two-cycle CP

1. Here the resolution

is a six-cycle. A purely algebraic proof of this fact is presented in appendix D. The β

corresponds to the U(1) fibration over CP
3.

3.2 Poisson equation on the resolution

Our aim is to construct the supergravity solution generated by a stack of M2-branes on

this resolved space.

We will first consider the case where we put the stack of M2-branes smeared over the

resolution of the orbifold, so that the we can make the simplifying assumption that the

warp factor is only a function of the radial coordinate. This was done in [10]. In the

case of the resolved conifold, an analogous computation was done originally in [16]. The

(homogeneous part of the) equation to be solved in our case can in fact be written in

the form6

1

ρ7
∂ρ

(

ρ7

(

1 − a8

ρ8

)

∂ρH

)

= 0. (3.12)

Since this is effectively a first order equation, it can be solved by direct integration. The

delta-function can be used to determine the overall constant. More directly, we can also

fix it by comparing with (2.10) as ρ
a → ∞. The end result is

Hsmeared = − 3C

π4a6

[

1

2
log

(

ρ2 − a2

ρ2 + a2

)

+
π

2
− tan−1

(

ρ2

a2

)]

(3.13)

The full nonsingular M2-brane solutions on the resolved C
4/Z4 can be constructed by

allowing the brane-stack to be localized at particular angular location on the “blown-up”

CP3 instead of homogeneously distributing them over the CP3. This is an approach adopted

by Klebanov-Murugan for obtaining regular D3-brane solutions over the resolution of the

conifold singularity [6], where the resolution was a two-cycle. The same method was also

adopted in [7] to write down regular D3-brane solutions over the resolved C
3/Z3 orbifold

geometry. Related work can be found in [8, 9].

We will put the stack at ρ = a, where the fibration has shrunk to zero size. This means

that our warp factor will no longer depend on β. Also (without loss of generality) we will

put the M2-brane sources at ξ = 0, where the rest of the cycles of CP
3 collapse to zero size

(see the CP
3 metric presented in the appendix.). This means that H does not depend on

the rest of the angles of CP
3 as well. So we can look for a warp factor in the form H(ρ, ξ).

6See for instance equation (3.22). The smeared Laplacian is just the radial part of the full Laplacian.
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We make a radial-spherical ansatz of the following type for the Green function:

H(ρ, ρ0 = a, ξ, ξ0 = 0) =
∑

l

Hl(ρ, ρ0 = a)Y ∗
l (ξ0 = 0)Yl(ξ). (3.14)

What makes this possible is the fact that the branes are localized at the resolution (ρ = a),

and on the resolution we make the choice (without loss of generality) that they are at the

North pole (ξ = 0). The equation to be solved takes the form

∇H ≡ ∇ρH +
1

ρ2
∇ξH = − kC

2π4ρ7 sin5 ξ cos ξ
δ(ρ− ρ0)δ(ξ) (3.15)

over the resolved transverse space. We will set k = 4 in the following as we are discussing

the Z4 singularity. The Laplace operators are

∇ρh ≡
(

1 − a8

ρ8

)

1
2

∂ρ

(

1 − a8

ρ8

)

1
2

∂ρH +
1

ρ

(

7 − 2
a8

ρ8

)

∂ρH,

∇ξh ≡ ∂2
ξh+ (5 cot ξ − tan ξ)∂ξh. (3.16)

Let us define for convenience
√
gρ = ρ7 and

√
gξ = sin5 ξ cos ξ. In order to solve the full

Green’s equation with source, we first solve for the eigen-value equation for the angular

part ∇ξYl = −ElYl, where Yl satisfy

∫ π
2

0
Y ∗

l (ξ)Yl′(ξ)
√
gξdξ = δll′ , (3.17)

∑

l

Y ∗
l (ξ)Yl′(ξ0) =

1
√
gξ
δ(ξ − ξ0). (3.18)

This was the basis for the expansion in (3.14). The angular harmonics are hypergeomet-

ric functions

Yl(ξ) ∼ 2F1(−l, 3 + l, 1, cos2 ξ) (3.19)

with the energy eigenvalues El = 2l(2l+ 6) ≥ 0. It turns out that these specific Hypergeo-

metric functions can be rewritten as Jacobi polynomials of the form P
(0,2)
l (− cos 2ξ). The

normalization of these have to be fixed by using the orthonormality of Jacobi polynomials

(see appendix B) and (3.17), and the result is

Yl(ξ) =
√

2(2l + 3)P
(0,2)
l (− cos 2ξ). (3.20)

With these Yl solutions, the next step will be to solve for the radial part

∇ρHl(ρ, ρ0) −
El

ρ2
Hl(ρ, ρ0) = − 2C

π4ρ7
δ(ρ − ρ0) (3.21)

This can also be written as
(

1 − a8

ρ8

)

∂2
ρHl +

1

ρ

(

7 +
a8

ρ8

)

∂ρHl −
2l(2l + 6)

ρ2
Hl = − 2C

π4ρ7
δ(ρ− ρ0). (3.22)
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Solving the homogeneous equation, we get two inequivalent solutions

HA ∼ 2F1

(

3

4
+
l

4
,− l

4
;
3

4
;
ρ8

a8

)

HB ∼ ρ2

a2 2F1

(

1 +
l

4
,
1 − l

4
;
5

4
;
ρ8

a8

)

(3.23)

These solutions have an exchange-symmetry under −l ↔ l + 3. The normalizations of the

solutions are so far unfixed, and they need to be suitably chosen while taking into account

the delta function at the location of the M2-brane stack at ρ = a.

The first task in fixing the normalization is to find a linear combination of the two

independent solutions that dies down at infinity. By using certain Hypergeometric identities

(see appendix C), one can write a linear combination of HA and HB that manifestly has

this property:

Hl(r) =
Cl

r2l+6 2F1

(

l + 3

4
,
l + 3

4
;
2l + 7

4
;−a

8

r8

)

(3.24)

Here ρ8 = r8 + a8. To fix the overall normalization Cl, we need to integrate across the

delta function. In the present case, we need to solve

[

ρ7
(

1 − a8

ρ8

)dHl

dρ

]

∣

∣

∣

∣

∣

ρ=a

≡
[

r(r8 + a8)3/4 dHl

dr

]

∣

∣

∣

∣

∣

r=0

= −2C

π4
, (3.25)

to fix Cl. With the form for Hl(r) from (3.24), this can be solved explicitly in terms of

Gamma functions:

Cl =
Ca2l

4π4

Γ
(

l+3
4

)

Γ
(

l+4
4

)

Γ
(

2l+7
4

) . (3.26)

Using the fact that P
(0,2)
l (−1) = (−)l(l + 1)(l + 2)/2, we can finally write down the

general solution for the M2 stack at the North pole as

H(r, ξ) =
∞

∑

l=0

(−)l(l + 1)(l + 2)(2l + 3) P
(0,2)
l (− cos 2ξ) Hl(r). (3.27)

3.3 Membrane RG flow

We can check that this reduces to the smeared solution obtained before by restricting to

the l = 0 harmonic:

H(r, ξ)|(l=0) = 6Hl=0 =
2C

π4r6
2F1

(

3

4
,
3

4
;
7

4
;−a

8

r8

)

. (3.28)

This looks superficially different from the smeared solution (3.13), but in fact is the same

as can be checked by expanding both expressions in a power series and comparing or by

plotting them on Mathematica for various values of a.
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It can also be checked that this singularity at r = 0 arising from the smearing is

removed by the sum over the various l’s. For small values of r, Hl presented above is

approximated by

Hl ∼ −C log(r)

a6
, (3.29)

and therefore, the full Green function takes the form

H ∼ −C

a6
log(r)

∞
∑

l=0

2(−1)l(l + 2)(2l + 3)P
(0,2)
l (− cos 2ξ) ∼ −C

a6
log(r)

δ(ξ)
√
gξ
, (3.30)

where in the last step, we have used the completeness relation (B.3) for Jacobi poly-

nomials presented in the appendix. In doing this, we are using ξ0 = 0, and therefore

P
(0,2)
l (− cos 2ξ0) = (−)l(l+ 1)(l+ 2)/2. Two useful elementary delta function relations are

f(x)g(y)δ(x − y) = f(x)g(x)δ(x − y) and δ(f(x)) = δ(x)
|f ′(x)| .

7

The above result makes it immediately clear that the singularity in the smeared case

at r = 0 is removed because of the vanishing of the delta-function away from the location of

the stack (ξ = 0). The smearing of the source branes on the six-cycle (CP
3) is also evident

because the radial part takes the form log r, which is nothing but the Green’s function in

(the remaining) two dimensions.

It turns out that by keeping track of the l-dependence of the Hl in the sum, we can

extract a bit more information. The sum of all the various l pieces near r = 0 should

gives rise to an AdS throat, because now we are around a smooth point. The emergence

of the throat is easy to see if we approach r = 0 along ξ = 0, because then the warp factor

looks like

H(r) =

∞
∑

l=0

(l + 1)2(l + 2)2(2l + 3)

2
Hl(r) ∼

∞
∑

l=0

l5Hl(r). (3.31)

We want to consider the near-horizon behavior where the local curvatures are irrelevant,

which means we are working in the limit where the distance scales are much less than the

resolution size, r ≪ a. We can solve the radial equation (away from the source) in this

limit. In this limit the homogeneous part of (3.16) reduces to

a8

r6
d2H

dr2
+
a8

r7
dH

dr
− 2l(2l + 6)H = 0 (3.32)

It turns out that the solution that dies down at infinity can be expressed in terms of

modified Bessel functions of the second kind. We will not present the explicit solution,

except to note one crucial feature of the solution that will be important to us: the entire

dependence of the solution on r and l is captured by the combination
√

l(l + 3) r4 ∼ l r4.

The normalization, which is fixed by integrating the solution across the delta function as

before, turns out to be independent of l. So we can write

H(r) ∼
∞
∑

l

l5f(lr4). (3.33)

7In general, this last expression should take the form δ(f(x)) =
P

i
δ(xi)

|f ′(xi)|
where the sum is over the

zeros of the function. But the relevant function in our case is (1 − cos 2ξ) whose only zero in the range

[0, π/2] is at ξ = 0.
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Since we know that this sum has to be convergent in l, we can treat the function f(lr4) as

a regulator [6]. The way in which such a regulator accomplishes finiteness is by decaying

rapidly for l > 1
r4 . This means that we can approximate the sum as

H(r) ∼
1/r4
∑

l=0

l5f(lr4) ∼
∫ 1/r4

0
l5f(lr4)dl ∼ 1

r24

∫ 1

0
x5f(x)dx =

const.

r24
. (3.34)

We have approximated the sum by an integral and then done a change of variables. In the

final step we have used the fact that for the modified Bessel function mentioned earlier,

the integral converges. (In fact for not too large x, the function can be approximated by

log x.). Now all that we need to do in order to see the emergence of the throat, is to notice

that close to ρ = a (with ξ = 0), the metric (3.11) takes the flat form with a new radial

coordinate u ∼ r4. Instead of systematically constructing the locally flat coordinates, one

way to see this quickly is to expand the metric as

ds2 ∼ du2 + u2dβ2 + a2ds2
CP3. (3.35)

Since we are taking the near-horizon limit along ξ = 0 (see the comment before 3.31),

the last piece can safely be dropped and the radial coordinate effectively becomes u.8 So

in terms of this flat coordinate, the warp factor (3.34) goes as ∼ 1
u6 . But a hexic fall-

off is precisely what is needed to generate the AdS4 throat, cf., equations (2.10), (2.11).

So finally, we end up with AdS4 × S7 as expected, in the near-horizon limit around a

smooth point.

4 Chern-Simons level shift

By gauge-gravity duality, we expect that the supergravity solution we constructed in the

previous section should have an interpretation in the field theory. The dual gauge theory

for M2-branes on a C
4/Zk orbifold is given by ABJM theory at a Chern-Simons level k.

Turning on a VEV corresponds to moving the branes away from the singularity. When

we do this, far away from the resolution, the gauge theory should still look like the dual

of the theory on the Zk orbifold, but if we zoom in on the stack, we expect that the dual

theory should have k = 1, because the membranes are effectively in flat space. The explicit

supergravity solution we constructed connecting these two cases should correspond, on the

gauge theory side, to an RG flow. Our purpose in this section is to see how this expectation

is realized, by finding pieces of evidence for the RG flow triggered by the VEV and to see

the reduction in the Chern-Simons level. We will first consider the case of generic k with

the gauge group rank N = 1, in which case we do not have to deal with the complications

arising from the ABJM superpotential because it vanishes identically. Notice that the

supergravity limit corresponds to the large N limit (for fixed small k), so the situation in

8Another way to say the same thing is to note that around a smooth point in (3.35) a flat space radial

coordinate can be defined by
p

u2 + a2ξ2. This is because the radial coordinate of a space with metric of

the form ds2 = dr2
1 + r2

1dΩ2
1 + dr2

2 + r2
2dΩ2

2 is
p

r2
1 + r2

2, as can be easily verified by translating to Cartesian

coordinates.
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this section captures a different regime. The emergence of the moduli space in ABJM has

been considered in [4], generalizing [18]. It turns out from their work that we can write

the action for level k ABJM theory for N = 1, as a sigma model

L = −∂µȲ
I∂µYI . (4.1)

The fact the moduli space is C
4/Zk is captured in this language by a redundancy in Y : one

should identify Y I ∼ e
2πi
k Y I . Our intention is to see how the theory changes when we give

a vev that corresponds to moving the branes away from the orbifold point. To see what

happens, it is easiest to write the sigma model in a coordinate system where this motion

is easily implemented. A convenient coordinate system is the one presented in (3.6), (3.9).

In terms of these new fields, the action takes the form L ∼ (∂r)2 + r2(∂ΩS7/Zk
)2, where

∂ΩS7/Zk
is a shorthand for the various pieces in the angular part.9 Notice that r2 =

∑ |Y I |2 =
∑ |CI |2, so moving away from the orbifold corresponds to giving a vev to (at

least) one of the fields as expected. Now it is easy to see that the when we give a vev as

r = v + r′, the action can be rewritten as that of flat eight dimensional space, plus terms

that are suppressed by higher powers of 1
v .10 The punch-line then, is that after giving

the vev corresponding to the motion away from the tip, the theory reduces to that of a

sigma model on flat eight dimensional space (up to higher order terms which are suppressed

in the IR). But such a theory is nothing but setting k = 1 in the U(1) ABJM theory as

defined by (4.1). Thus starting from the generic k Abelian ABJM theory, and by giving the

appropriate vev, we have flown to ABJM at level 1. This is precisely what the supergravity

solution we constructed captured in a different regime.

The discussion above was for the Abelian case. For the generic case of U(N) × U(N),

the ABJM superpotential does not vanish, and the Abelian duality we did earlier in order

to write down the sigma model variables does not go through. Because of the non-trivial

superpotential, the translation in the non-Abelian case is not clear to us. It is known that

the chiral operators of ABJM theory contain Wilson lines [4], and therefore the problem

might involve a non-local redefinition of fields: the analog of the Y operator might contain

Wilson lines connecting C(x) to ∞. In the Abelian case, the “dressed” field in the sigma

model variables Y that we wrote down, contains τ(x) ≡
∫ x

dyµ(Aµ − Âµ) in terms of the

original ABJM variables [4]. Supersymmetric Wilson lines in ABJM have been considered

in [41–45]. See [46] for a related discussion in terms of ’t Hooft operators. But the full

gauge-invariance and path-independence of such an operator are non-trivial and it is not

clear to us if one can isolate its dynamics from the rest of the fields. Some of these questions

are currently being investigated.

Despite these difficulties, there is one simple check that we can do even in the non-

Abelian case: we can check that the moduli space of the theory that results after we turn

9The angular part is that of the orbifold, but this does not affect any of the arguments below because

the new fields get appropriately rescaled.
10This is just the familiar statement that all spaces look flat locally. A simple example that captures the

basic idea is to consider the action ∂z̄∂z, for a complex field z. We can re-express it as z = ρeiθ, and if we

give a vev as ρ = v + ρ′, then the action takes the form (∂ρ′)2 + (∂θ′)2 + O( 1
v
), where θ′

≡ vθ in order to

retain canonical kinetic terms. So the new coordinates ρ′ and θ′ are flat 2D Cartesian coordinates, despite

their names. Our situation is exactly analogous, except we have more angular coordinates.

– 15 –



J
H
E
P
0
5
(
2
0
0
9
)
1
1
4

on the vev, reproduces the expected moduli space at k = 1. The moduli space of the

theory before we give the vev is (C4/Zk)
N/SN . This corresponds to the matrices CI being

diagonal. This breaks the gauge symmetry to U(1)N × U(1)N times the permutation of

the diagonal elements. The off-diagonal elements all get mass, which means that only the

U(1)N ×U(1)N part of the U(N)×U(N) theory is relevant to the discussion of the moduli

space. Since the U(1)N × U(1)N part is nothing but N copies of the U(1) × U(1) theory

with the same flux quantization conditions as in the Abelian version [4], we can write it

as N copies of (4.1). So to see the new moduli space for a theory expanded around the

generic vev, we can reuse the arguments for the Abelian case, which gives us now N copies

of C
4 up to permutations. Therefore we see that the new moduli space is (C4)N/SN , which

is the moduli space of N M2-branes in flat space.

The situation we have considered in this section (v → ∞), is very different from the case

when we give a vev v → ∞, k → ∞, while holding v2/k fixed. Large k effectively reduces

the transverse size of the cone (or more precisely the U(1) fibration), and if we consider

this as the M-theory circle, then we are effectively left with a theory of D2-branes [39], with

Yang-Mills coupling ∼ v2/k. In the finite k case which we are considering, if we naively give

a vev like in [39], but without tuning k, the theory still turns into N = 8 SYM plus more IR

suppressed terms. What we want therefore is the IR limit of N = 8 SYM, which cannot be

captured by a purely classical analysis. It should also be noted that usually Chern-Simons

level shifts refer to a one-loop shift. See, e.g., [40] for a discussion in the context of BLG

theory. The level shift that we consider here arises after field re-identifications along the

RG flow which starts at generic k and ends at k = 1.

It is instructive to compare our arguments above with the situation in AdS5/CFT4.

There, the moduli space is usually expressed in terms of independent gauge invariant poly-

nomials constructed out of the chiral bi-fundamentals. Of all such operators constructed

that way, many are redundant, because of the F-term conditions. The algebra of the rest

fixes the moduli space of the theory.11 Giving a vev to one of the fields triggers an RG flow

that finally leads one to N = 4 SYM. But in ABJM theory, the bi-fundamentals directly

define a sigma model, and the vev changes the level of the theory.

4.1 The gauge dual of the resolved orbifold

In the case of the conifold, the Klebanov-Witten gauge theory [34] is supposed to be dual

to the unresolved conifold. In fact, moving the D3-branes away from the tip of the conifold

corresponds to giving a vev to the bifundamental scalars of the theory (Ai, Bi), but in such

a way that the operator

1

N
Tr

(

|A1|2 + |A2|2 − |B1|2 − |B2|2
)

(4.2)

remains zero. If this operator is not zero, then the gravity dual was interpreted to be no

longer the singular conifold, but the resolved conifold [35]. Can we say something analogous

in our case?
11The construction of the moduli space is analogous to the algebraic construction of, e.g., the space

C
4/Z4, presented in (D.1) in appendix D. But note that in ABJM, the algebraic construction of the space

is quite different from the construction of the moduli space in the gauge theory, as done in [4, 18].
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We can try to identify the dual gauge theory operator that is being turned on (when we

resolve the orbifold) by looking at the linearized solution around the AdS background. The

AdS/CFT dictionary relates the asymptotic fall off of the bulk fields to the dimensions of

the gauge theory operators. Since we are interested only in the asymptotics, we can restrict

our attention to the smeared form of the warp factor (3.13). From the explicit expression,

we find that

H ≈ L6

ρ6

(

1 +
3a8

7ρ8
+ · · ·

)

, (4.3)

where dots indicate higher order terms. Using this in the standard M2-brane ansatz (2.6),

using (3.11) for the transverse metric, we end up with

ds2 ≈ ρ4

L4
ηµνdx

µdxν +
L2

ρ2
dρ2 + L2ds2S7/Z4

+

− 2a8

7L4ρ4
ηµνdx

µdxν +
8L2a8

7ρ10
dρ2 +

8L2a8

7ρ8 (ds2S7/Z4
+ · · · ) + · · · (4.4)

The first line reproduces precisely the AdS4 × S7/Z4. And it is clear from comparing with

this piece that the fall-offs in the second line correspond to that of a dimension 4 operator

in the dual gauge theory.12 Note also that the relative normalization is what determines

the dimension. This is quite analogous to the case of the blown up four-cycle considered

in [17]. Our resolution here is a six-cycle, as can be seen purely algebraically, from the

discussion given in appendix D. It is easy to check also that the fall-off of the form field

C012 ∼ H−1 also leads to the same result for the dimension.

In the above, we have worked with the smeared solution. But it is possible to argue

directly using the Kähler potential (3.5) that the answer is unchanged even without this

assumption. This is analogous to the discussion around eq. (4.16) in [35]. What we need

to look at is the expansion of (3.5) to lowest order in a. For the case n = 4 that is relevant

here, we immediately see from the properties of Hypergeometric functions that

K(r) ∼ r2
(

1 − 1

12

a8

r8
+ O

(

r−16
)

)

(4.5)

So we see that the first corrections arise at order O(r−8), i.e., dimension 4. When we

compute the metric using the Kähler potential, the angular parts can at most increase the

rate of fall-off if they have the correct symmetry properties and sum up to zero at some

order, but never reduce it. In particular, the smeared solution captures the averaged out

fall-off over the angles, and since it starts at O(r−8), we again come to the conclusion that

the dimension of the dual gauge theory operator is 4. Note also that in the case of the

resolved conifold, the smeared solution constructed by Pando-Zayas and Tseytlin [16] had

the same fall-off as the un-smeared version suggested in [35] and explicitly constructed

in [6].

12The AdS-CFT correspondence, as presented in [48], dictates that the dimension of the operator is fixed

by the fall-offs through the coordinate z ∼
1
ρ2

defined before (2.11).
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Can we be any more specific about the nature of this operator? In the case of the

resolved conifold, it was possible to identify the operator because it was in a baryonic

current multiplet, and therefore was protected. The resolution parameter in Klebanov-

Witten was related to a D-term in the gauge theory (see 4.2), and it had precisely the

correct dimension, namely 2. In our case, the baryonic current13 is of the form Tr(CI†CI),

and has dimension 1 (we are in 3D). This is clearly not the dimension of the operator

dual to the resolution that we found above, suggesting that the baryonic current is not

the correct operator. This is not surprising. In general, the dimensions of the operators

dual to resolutions are unknown even when there are baryonic symmetries, see [17] for a

discussion of general four-cycles in AdS5/CFT4.

Another way to motivate that the construction in ABJM has serious differences from

that in KW is as follows. In the analogue of “D-terms” in three dimensions, the role

of the FI parameter is captured by the scalar in the vector multiplet [25]. This is one

manifestation of the fact the determination of the moduli space in ABJM theory crucially

depends on the gauge redundancy. It should also be noted that once we take these gauge

redundancies correctly into consideration, the moduli space is no longer the conifold, but

an orbifold, despite the fact that the superpotentials have the same form [4]. In KW on the

other hand, the F-term relations arising from the superpotential immediately determine the

moduli space to be the conifold. In ABJM case (with k = 4), the moduli space arises from

the complex coordinates through the identification Y I ∼ ei
π
2 Y I arising from the gauge-

redundancy [4, 18]. The invariant monomials that one can construct for this orbifold

action satisfy the complicated algebra of the C
4/Z4 orbifold,14 and not the rather simple

expression for the conifold (namely, xy = zw), and therefore a characterization of the

resolution will be substantially more complicated. With only such an implicit description,

the determination of the operator dual to the resolution is a non-trivial task, even in the

off-chance that it falls in a protected multiplet of some sort. We will not pursue this

direction further here, but merely remark that it is certainly worthy of further study.

Another related comment is that baryonic operators in ABJM are more subtle than in

the conifold theory. An operator of the schematic form detC, which is the analogue of the

conifold baryonic operator, is not gauge invariant because the gauge group is U(N)×U(N)

and not SU(N) × SU(N). It has been suggested that baryonic operators in ABJM theory

can be constructed by the insertion of Wilson lines in detC [37]. Aspects of baryonic

operators and symmetries in AdS5/CFT4 have been investigated in [36].

Our orbifold is toric, and so in algebraic language, the resolution can be implemented

in terms of the charge zero monomials that are invariant under the orbifold action. Some of

the details are presented in an appendix. In the toric language the Higgsing in the resolved

case corresponds to zooming in on a specific patch, say z4 6= 0 on the blown up CP
3. We

13Note that the baryonic symmetry is gauged in ABJM, because the gauge group is U(N) × U(N) and

not SU(N) × SU(N).
14See appendix D for the monomials, their algebra is straightforward enough to write down, but we don’t

write them explicitly because they are cumbersome and not immediately useful.
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can define new coordinates on this patch according to15

u1 =
z1
z4
, u2 =

z2
z4
, u3 =

z3
z4
, u4 = z4

4z5. (4.6)

Notice that this splits off the CP
3 (the first three coordinates are nothing but the coordi-

nates on the standard chart on the z4 6= 0 patch of CP
3) and the forth coordinate is a C

fiber on the CP
3, with an appropriate transition function piece that captures the Chern

class of the bundle. In fact, this is the total space of the line bundle O(−4) → CP
3. When

we set |z4| ∼ µ, we only see the (u1, . . . , u4) patch, which is nothing but C
4. In the toric

diagram in figure 1 (see appendix D), letting µ→ ∞ is equivalent to chopping off the node

[−1,−1,−1, 1] and we end up with the toric polytope for C
4.

Since we do not know the precise form of the operator dual to the resolution, we cannot

be sure what vevs to give in order to trigger the RG flow. But we can try to see whether

giving a vev analogous to the one we tried in the unresolved case is a reasonable choice.

Indeed, if we give a “vev”16 to one of the Y I , it breaks the SU(4) down to SU(3) and this is

preserved by a localized stack on the resolution, because CP
3 is the coset space SU(4)/U(3).

(This is analogous to the fact that if we put a localized source on the sphere S2, there is an

unbroken SO(2) that is left of the original SO(3): this is because S2 = SO(3)/SO(2)). In

this simple case, the natural candidate for the endpoint of the RG flow is ABJM at k = 1,

but it would be useful to have a more hands-on understanding of the path of these flows.

In particular, in more general cases, it would be interesting to understand whether the RG

flows in M2-brane theories demonstrate structures (cascades, walls, trees, . . . ) analogous

to the RG flows in four dimensional N = 1 theories.

5 Summary and comments

In this paper we have looked at M2-brane stacks, on certain orbifolds and their resolutions.

Our interest was primarily in seeing the RG flows that are created when we move the

stack to a smooth point. On the supergravity side, we have constructed explicit solutions

that capture this RG flow and demonstrated that they indeed interpolate between the

appropriate limits. Our discussion of the gauge theory side was far less exhaustive, but we

have presented some arguments why it is reasonable for the Chern-Simons level of ABJM

gauge theory to undergo a shift due to the RG flow. We have also constructed supergravity

solutions dual to brane stacks on a resolved orbifold. This corresponds to a dimension 4

operator in the dual gauge theory. The emergence of the AdS4 ×S7 throat is analogous to

similar constructions in AdS5/CFT4. But unlike in AdS5/CFT4, where the end result of

such a flow is N = 4 SYM, here the RG flow results in a shift to k = 1 in the Chern-Simons

level, at the IR fixed point.

15All the 35 monomials listed in the appendix can be re-expressed as monomials of these new variables

satisfying the same algebra, as can be easily checked.
16Note that Y I is not gauge-invariant, and this is merely a schematic argument. This should be compared

to the conifold, where the gauge-invariant operators are constructed from traces of products of fields, but

it is sometimes useful to talk about giving a “vev” to A or B, in such a way that gauge-invariant operators

end up getting non-zero vevs.
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In the rest of the section, we make some comments about possible directions for fu-

ture work.

In the part of this paper where we considered the resolution, we focussed on the orbifold

C
4/Zk for the specific case k = 4. The reason was that for this value of k, the metric

on the orbifold (and its resolution) can easily be found generalizing the Eguchi-Hanson

metric on C
2/Z2 in four dimensions (as we sketched in a previous section). It would be

very interesting to construct explicit metrics for the resolutions when k is generic. The

metric on the unresolved space C
4/Zk was written down in [4, 15] using the fact that it

can be thought of as a toric hyperKähler manifold. These spaces are related to Kaluza-

Klein monopoles that generalize Gibbons-Hawking (Taub-NUT) spaces in four dimensions.

Gibbons-Hawking metrics have an orbifold singularity when the many centers coincide,

which gets resolved when the centers are moved apart. So it seems plausible that one

could construct resolutions of C
4/Zk by manipulating the various “centers” that arise in

its construction as a toric hyperKähler manifold.

We have tried to explore some aspects of the RG flow in the gauge theory side. We

have investigated only the Abelian case (i.e., the case when the gauge group is U(1)×U(1))

where the superpotential identically vanishes and an Abelian dualization on the gauge-fields

can be usefully executed to understand what happens when we turn on a VEV. In the case

when the gauge group rank is higher, the superpotential is non-trivial, and the situation

is more complicated. Since the chiral operators of the theory contain a Wilson line that

goes to infinity, finding a manifestly local description is probably difficult. It would be

interesting to understand these questions better.
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A CP
3 and S

7: factsheet

The standard Fubini-Study metric on CP
3 can be written in terms of the three complex

projective coordinates ζi:

ds2
CP3 =

dζ̄idζ
i

ρ2
− (ζidζ̄i)(ζ̄

jdζj)

ρ4
(A.1)

where ρ2 = 1 + ζ̄iζi. In terms of the parametrization for C
4 that we introduced in (3.6)–

(3.9), we can define explicit coordinates ζi on CP
3 by going to a specific patch. If we choose

a patch where w4 in (3.6) is non-vanishing, then we can define

ζi =
wi

w4
for i = 1, 2, 3 (A.2)
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and the metric takes the explicit form

ds2
CP3 = dξ2 + sin2 ξ

(

dα2 +
1

4
sin2 α

(

σ2
1 + σ2

2 + cos2 ασ2
3

)

+
1

4
cos2 ξ

(

dχ+ sin2 ασ3

)2
)

(A.3)

The σi are the left-invariant one-forms of SU(2) (There is an S3 inside CP
3 and it is useful

to think of it as the group manifold SU(2) for parametrization purposes):

σ1 = cosψ dθ + sinψ sin θ dϕ, (A.4)

σ2 = − sinψ dθ + cosψ sin θ dϕ, (A.5)

σ3 = dψ + cos θ dϕ. (A.6)

They are chosen so that they satisfy the Maurer-Cartan equation for the group:

dσi = −1

2
ǫijkσj ∧ σk (A.7)

The ranges/periodicties of the angles are 0 ≤ ξ, α ≤ π
2 , 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and

0 ≤ ψ,χ ≤ 4π. The metric above is identical to the one in, for example, [13]. Some useful

references are [14, 38].

We can now introduce a round seven-sphere as a fibered U(1) bundle over CP
3 base

ds2S7 = (dβ′ −A′)2 + ds2
CP3 (A.8)

where 0 ≤ β′ ≤ 2π is the range of the coordinate on the fibers. The form A′ is defined in

terms of the Kähler form of the base and can be taken in the form [13] A′ = 1
2 sin2 ξ(dχ+

sin2 ασ3). It is now easy to define a metric on S7/Zk as

ds2S7/Zk
=

1

k2
(dβ −A)2 + ds2

CP3 (A.9)

where 0 ≤ β ≤ 2π and

A =
k

2
sin2 ξ(dχ+ sin2 ασ3) (A.10)

The invariant volume element on CP
3 can be written as

√
gCP3 =

1

16
sin5 ξ cos ξ sin3 α cosα sin θ. (A.11)

The volume of unit CP
3 is then π3

6 and that of unit radius S7/Zk is π4

3k .

It will sometimes be useful to have various geometrical results regarding S7 with the

metric induced from the Euclidean space into which it is embedded. This embedding done

in the standard way according to the relation
∑8

i=1 (xi)
2

= r2. The metric of flat 8D space

can then be written as ds2 = dr2 + r2dΩ2
S7, where dΩ2

S7 is the metric on the unit 7-sphere.

To do explicit computations, sometimes it is useful to work in spherical polar coordinates

which are defined in the standard way as

x1 = r cos θ1, x2 = r sin θ1 cos θ2, . . . , x
7 = r sin θ1 sin θ2 sin θ3 sin θ4 sin θ5 sin θ6 cosφ,

and finally x8 = r sin θ1 sin θ2 sin θ3 sin θ4 sin θ5 sin θ6 sinφ.
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The coordinates {r, θ1, . . . , θ6, φ} span R
8 ≡ C

4, when r ∈ [0,∞), θi ∈ [0, π] and φ ∈ [0, 2π).

In these coordinates the metric on S7 takes the explicit form

dΩ2
S7 = dθ2

1 + sin2 θ1
(

dθ2
2 + sin2 θ2

(

dθ2
3 + sin2 θ3

(

dθ2
4 + sin2 θ4

(

dθ2
5 (A.12)

+ sin2 θ5
(

dθ2
6 + sin2 θ6dφ

2
)))))

.

This leads to the 8-dimensional volume form r7 sin6 θ1 . . . sin θ6drdθ1 . . . dθ6dφ. Integrating

the angular part over their range, we find that the volume of the 7-sphere is π4

3 . Notice

that by volume here, we mean the volume of S7 as a manifold and also that it agrees with

what was found through the U(1) fibration over CP
3, as it should.

B Jacobi polynomials

We collect some useful features of Jacobi polynomials (a kind of orthogonal polynomials)

here. They show up in the angular part of the harmonics on CP
3.

For our purposes, Jacobi polynomials are defined in terms of Hypergeometric func-

tions as

P (α,β)
n (x) =

Γ(n+ α)

Γ(α)Γ(n)
2F1

(

−n, n+ α+ β + 1;α+ 1;
1 − x

2

)

(B.1)

where Γ(x) is the Euler Gamma function. For each choice of the pair of indices α, β, we

get an orthonormal set of basis functions. Their orthogonality relation takes the form

∫ +1

−1
(1 − x)α(1 + x)βP (α,β)

m (x)P (α,β)
n (x) dx = (B.2)

=
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n! Γ(n+ α+ β + 1)
δnm.

The completeness relation is

∞
∑

n=0

n! (2n+ α+ β + 1)Γ(n + α+ β + 1)

Γ(n+ α+ 1)Γ(n + β + 1)
P (α,β)

n (x)P (α,β)
n (y) = (B.3)

= 2α+β+1(1 − x)−α/2(1 + x)−β/2(1 − y)−α/2(1 + y)−β/2δ(x− y).

In all the above relations, Re(α, β) > −1, and n is a positive integer.

C Gamma functions and hypergeometric functions

A useful relation connecting Gamma functions which comes in handy when finding the

asymptotic behaviors of various hypergeometric functions used in the text is

Γ(x)Γ(1 − x) =
π

sinπx
(C.1)
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Two hypergeometric identities that we have repeatedly used in this paper are col-

lected below:

∂ 2F1(a, b; c; z)

∂z
=
ab

c
2F1(a+ 1, b+ 1; c+ 1; z)2 (C.2)

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)z−a

Γ(c− a)Γ(c− b)
2F1

(

a, a− c+ 1; a+ b− c+ 1; 1 − 1

z

)

(C.3)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1 − z)c−a−bza−c

2

×F1

(

c− a, 1 − a; c− a− b+ 1; 1 − 1

z

)

D Toric geometry

The toric data of the C
4/Z4 orbifold is useful in describing the resolution. An algebraic

description of the geometry can also be useful in understanding the moduli space of the

dual gauge theory. For these reasons we describe the C
4/Z4 orbifold as a toric space in

this appendix. A practical introduction to toric geometry can be found in [29–32]. What

we do here is an immediate generalization of [33].

Before we launch into the details of the toric diagram, we first make an observation

that algebraically, we can define the C
4/Z4 orbifold through the algebra of the degree four

monomials constructed from w1, w2, w3, w4 in (2.4). The basic idea behind any algebraic

description of a space is to consider the algebra of functions over that space. In our case,

there are 35 such invariant monomials that one can construct, and we can write

C
4/Z4 = C

[

P 4, Q4, R4, S4, P 3Q,P 3R,P 3S,P 2Q2, P 2QR,P 2QS,P 2R2, P 2RS,P 2S2,

PQ3, PQ2R,PQ2S,PQR2, PQRS,PQS2, PR3, PR2S,PRS2, PS3, Q3R,

Q3S,Q2R2Q2RS,Q2S2, QR3, QR2S,QRS2, QS3, R3S,R2S2, RS3
]

≡ C[Vijkl] (D.1)

where for convenience, we have decided to use the variables P,Q,R, S instead of the wi’s.

In the final line, we have also defined a succinct notation for the monomials for later use.

Now we turn to the toric data. We will start by writing down the vectors that define

the toric diagram of the orbifold. Together with the origin, these lattice sites completely

determine the space:

v1 = [1, 0, 0, 0], v2 = [0, 1, 0, 0], v3 = [0, 0, 1, 0], v4 = [−1,−1,−1, 4]. (D.2)

To show that this is indeed the correct description of C
4/Z4, we first construct the dual

cones. A vector (a, b, c, d) in the dual cone is defined by the condition that it has non-

negative inner product with the vertices above. We want to find a set of basis vectors for

the dual cones. That is, we want to find the minimal set of solutions to

a ≥ 0, b ≥ 0, c ≥ 0, 4d ≥ a+ b+ c (D.3)
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so that all other such vectors can be expressed as positive linear combinations of the

minimal ones. To find this basis, we first notice that the first non-trivial solutions occur at

d = 1, and then we try to satisfy the inequalities in various ways. This is straightforward,

and the result is

u1 = (0, 0, 0, 1), u2 = (0, 0, 1, 1), u3 = (0, 1, 0, 1), u4 = (1, 0, 0, 1), u5 = (1, 1, 0, 1),

u6 = (1, 0, 1, 1), u7 = (0, 1, 1, 1), u8 = (0, 0, 2, 1), u9 = (0, 2, 0, 1), u10 = (2, 0, 0, 1),

u11 = (1, 0, 2, 1), u12 = (0, 1, 2, 1), u13 = (0, 2, 1, 1), u14 = (1, 2, 0, 1), u15 = (2, 0, 1, 1),

u16 = (2, 1, 0, 1), u17 = (0, 2, 2, 1), u18 = (2, 0, 2, 1), u19 = (2, 2, 0, 1), u20 = (2, 1, 1, 1),

u21 = (1, 1, 2, 1), u22 = (1, 2, 1, 1), u23 = (1, 1, 1, 1), u24 = (0, 0, 3, 1), u25 = (0, 3, 0, 1),

u26 = (3, 0, 0, 1), u27 = (1, 0, 3, 1), u28 = (0, 1, 3, 1), u29 = (0, 3, 1, 1), u30 = (1, 3, 0, 1),

u31 = (3, 1, 0, 1), u32 = (3, 0, 1, 1), u33 = (4, 0, 0, 1), u34 = (0, 4, 0, 1), u35 = (0, 0, 4, 1).

(D.4)

It is easy to see that the vectors in the dual cone with d > 1 can always be constructed

with these solutions. In toric geometry, the basis of the dual cone captures the algebraic

description of the original space: to each basis vector, we can associate a unique monomial

(up to irrelevant overall scalings which do not affect the algebra of the monomials). In the

present case, since d = 1 for all the basis vectors, it is easy to see that with

P 4d−a−b−cQaRbSc identified with the vector (a, b, c, d) (D.5)

the 35 basis vectors above reproduce the 35 monomials we found in (D.1). So as claimed,

the toric data in (D.2) indeed describes our orbifold algebraically.

We present the toric diagram of the orbifold in figure 2. It is somewhat more convenient

to do an SL(4,Z) transformation on the lattice coordinates (D.2), and we have drawn the

toric diagram in the new coordinates. The new vertices ar17

v1 = [1, 0, 0, 1], v2 = [0, 1, 0, 1], v3 = [0, 0, 1, 1], v4 = [−1,−1,−1, 1]. (D.6)

The advantage of the new coordinates is that now, all the vertices (except of course, the

origin) have the same value for the forth coordinate. This is possible because the original

space is Calabi-Yau. In toric language, the Calabi-Yau condition translates to the condition

that the vertices (other than the origin) lie on a codimension one hypersurface on the lattice.

By doing the SL(4,Z) transformation, we have made this manifest. Since the space is

complex 4-dimensional, the toric diagram lives in a 4-d lattice. Ignoring the apex of the

cone (namely the origin), we then have a three-dimensional (as opposed to 2-dimensional

for CY 3-folds) polytope that captures the entire information about the CY space. One

feature that is immediately clear from the 3-d geometry of this toric diagram is that there

is a lattice point, namely (0, 0, 0, 1), that is situated in its interior. A general strategy for

constructing crepant resolutions of this kind of spaces, is to add vertices corresponding to

interior points and to use the new fan that is generated, as the definition of the resolved

17The SL(4, Z) matrix that accomplishes this is easy to figure out from the final and initial vertices.
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(1, 0, 0, 1)

(0, 1, 0, 1)

(0, 0, 1, 1)

(−1,−1,−1, 1)

(0, 0,
0, 1)

Figure 2. toric diagram of C4/Z4.

space. This means that the resolved C
4/Z4 orbifold is represented, in addition to the

vertices (D.6), by

v5 = [0, 0, 0, 1]. (D.7)

With this prescription, we can go ahead and do the GLSM construction of the resolved

space. The five vertices must satisfy a linear relation among them:

5
∑

i=1

Qivi = 0, with Qi = (1, 1, 1, 1,−4) (D.8)

Using these charges, we can define the resolved space in terms of complex coordinates

{z1, z2, z3, z4, z5} by imposing

|z1|2 + |z2|2 + |z3|2 + |z4|2 − 4|z5|2 = µ, µ ≥ 0, (D.9)

and then modding out by the identification defined through the U(1) action

(z1, z2, z3, z4, z5) ∼ (eiθz1, e
iθz2, e

iθz3, e
iθz4, e

−4iθz5). (D.10)

Note that the charges were needed to define both steps.

How do we see that the GLSM construction indeed reproduces our expectation that at

the origin of the resolution, the orbifold is resolved by a CP
3? We first note that the U(1)

quotienting (D.10) is nothing but the instruction that the basic invariant polynomials are

to be constructed by multiplying z5 to the degree 4 monomials constructed from z1, . . . , z4.

This gives rise to the monomials z5Vijkl, if we identify z1, . . . , z4 with P,Q,R, S (see (D.1)).

The algebra of z5Vijkl is identical to that of Vijkl. This means that the space is nothing

but the orbifold C
4/Z4, except possibly something strange happening at z5 = 0, where the
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monomials collapse to zero. Since the vanishing of the monomials happened only at the

orbifold point in the unresolved case, we say that the entire z5 = 0 divisor replaces what

used to be the orbifold point in the unresolved space.18 Away from z5 = 0, we have done

nothing as far as the algebra is considered, so the space is unaffected. We can think of µ

in (D.9) as the resolution parameter. To see this, note that when µ = 0, z5 = 0 forces

z1, . . . , z4 to be all zero, resulting in a point. But when µ 6= 0, the same condition results

in the usual quotient definition of CP
3. So we see that the resolution happens through the

replacement of the orbifold point by a six-cycle.
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